Simultaneous quantitative mapping of conductivity and susceptibility using a double-echo ultrashort echo time sequence: Example using a hematoma evolution study.

نویسندگان

  • Sung-Min Gho
  • Jaewook Shin
  • Min-Oh Kim
  • Dong-Hyun Kim
چکیده

PURPOSE The primary purpose of this study is to propose a method for the simultaneous quantitative three-dimensional (3D) mapping of conductivity and susceptibility using double-echo ultrashort echo time (UTE) imaging. The secondary purpose is to investigate the changes of these properties over time during in vitro hematoma evolution in blood samples. METHODS The first and second set of echo data for a UTE sequence were used to perform quantitative conductivity mapping (QCM) and quantitative susceptibility mapping (QSM), respectively. A simulation study was conducted to determine the echo time (TE) range that was acceptable for QCM. Subsequently, a NaCl phantom experiment and in vivo 3D QCM and QSM demonstrations were performed. The changes in electromagnetic (EM) properties over time were studied using in vitro blood coagulation experiments with venous blood from healthy volunteers. RESULTS Quantitative and qualitative analyses showed small differences in the QCM for TE values up to 300 μs. The estimated conductivity and susceptibility values monotonically increased during the first few hours of the hematoma evolution experiments. However, although the susceptibility values continued to increase, the conductivity values were steady after 24 h. CONCLUSION The proposed method can be useful for determining EM property changes (including those during hemorrhage) and providing additional information about the state of the blood. Magn Reson Med 76:214-221, 2016. © 2015 Wiley Periodicals, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous imaging of in vivo conductivity and susceptibility.

PURPOSE Approaches for quantitative mapping of electric conductivity and magnetic susceptibility using MRI have been developed independently. The purpose of this study is to present a method to simultaneously acquire information on conductivity and susceptibility and to produce images based on these properties. METHODS A 3D multiecho gradient-echo sequence was used. Phase evolution during the...

متن کامل

Hematoma volume measurement in gradient echo MRI using quantitative susceptibility mapping.

BACKGROUND AND PURPOSE A novel quantitative susceptibility mapping (QSM) processing technology has been developed to map tissue susceptibility property without blooming artifacts. We hypothesize that hematoma volume measurement on QSM is independent of imaging parameters, eliminating its echo time dependence on gradient echo MRI. METHODS Gradient echo MRI of 16 patients with intracerebral hem...

متن کامل

Effect of Echo Time on the Maximum Relationship between Contrast Agent Concentration and Signal Intensity Using FLAIR Sequence

Introduction Contrast-enhanced fluid-attenuated inversion recovery (FLAIR) is one of the MRI sequences that can be used for detection and evaluation of pathological changes in the brain. In this work, we have studied the effect of different echo times (TE) on the maximum relationship between signal intensity and concentration of the contrast agent using the FLAIR sequence. Materials and Methods...

متن کامل

Comparing Relative Contrast in Three-dimensional Double-echo Steady State With Routine Sequences for a Better Diagnosis of Knee Cartilage Anomalies

Aims This study compared relative contrast values in three-dimensional Double Echo Steady State (DESS) sequences with two flip angles of 40 and 90 degrees and other routine sequences. The obtained data could help to prove the effects of this sequence, compared to the other routine sequences; accordingly, it could be applied for better detection of lesions resulting from cartilage abnormalities....

متن کامل

Dynamic contrast-enhanced quantitative susceptibility mapping with ultrashort echo time MRI for evaluating renal function.

Dynamic contrast-enhanced (DCE) MRI can provide key insight into renal function. DCE MRI is typically achieved through an injection of a gadolinium (Gd)-based contrast agent, which has desirable T1 quenching and tracer kinetics. However, significant T2* blooming effects and signal voids can arise when Gd becomes very concentrated, especially in the renal medulla and pelvis. One MRI sequence des...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 76 1  شماره 

صفحات  -

تاریخ انتشار 2016